
2. Creating Friendly Layers

Paul Barker

About Me

• Involved in Yocto Project since 2013

• Work across the whole embedded stack

• Managing Director & Principal Engineer
@ Beta Five Ltd

• Contact: paul@betafive.co.uk
• Website: https://www.betafive.co.uk/

mailto:paul@betafive.co.uk
https://www.betafive.co.uk/

About This Talk

• Introduction

• Best Practices
• Layers to learn from

• Methods

• Examples

• Parsing details of bblayers.conf and layer.conf files

• Suggestions for future work

There Shall Be No Victims

• I won’t be showing examples of bad practice today

• Sorry to disappoint!

What Is A Friendly Layer?

• Simply adding the layer doesn’t change functionality

• Doesn’t assume MACHINE, DISTRO, etc

• Careful use of bbappends

• Avoid clashing with recipe names in existing layers

• Place python helpers in a lib directory
• Avoid littering the global namespace

• Well documented

Why Should You Care?

• Yocto Project Compatible badge requires this

• Makes it easier to integrate with other layers
• Less likely to cause conflicts

• Easier to test and debug builds
• Can quickly turn features on and off

• Can reduce the number of layers you need to create
• Check MACHINE instead of having one layer per machine

• Check features instead of having one layer per feature

• Actually simplifies development of your layer

But can’t you just dynamically set BBLAYERS?

• Not in a multiconfig

• Not based on variables in local.conf or some layer
• So you may not even know MACHINE, DISTRO, etc

• Not even very easily in bblayers.conf
• Parsing limitations discussed later

• Dynamically creating bblayers.conf for each build means another script
to maintain

Layers To Learn From

• meta-virtualization

• meta-clang

• meta-security

• meta-raspberrypi

Documenting Your Layer

• You need a README

• Also add a ‘docs’ folder at the top level
• Sphinx (http://www.sphinx-doc.org) is a good choice

• Can publish to Read the Docs (https://readthedocs.org)

• Also clearly identify
• Licensing

• How to contribute

• Support forums or email addresses

http://www.sphinx-doc.org/
https://readthedocs.org/

Keep layer.conf simple

• Settings in layer.conf apply to all recipes
• Not just those in your layer

• Often difficult to override things set in layer.conf

• Parsed very early
• Details covered later

• Parsed in BBLAYERS order not BBFILE_PRIORITY order

Adding New Content in Layers

• New content is typically safe to add
• New recipes

• New classes

• New machines

• New distros

• Watch out for name clashes
• Search the layer index first: https://layers.openembeded.org/

https://layers.openembeded.org/

Modifying Existing Recipes

• This is where you can cause problems

• Don’t indiscriminately modify variables and tasks

• Use overrides and conditionals

• Check MACHINE, DISTRO, feature variables, etc

_remove: Use with caution

• _remove takes precedence over _append

• _remove cannot be undone easily!

• Avoid it if at all possible

Using Overrides

• Extend OVERRIDES based on a variable

• Use override syntax in variable assignments

• Document your new variable

• For example, if you support option `a` and option `b`:
OVERRIDES =. "option-${OPTION}“

SRC_URI_append_option-a = "file://a.patch"

SRC_URI_append_option-b = "file://b.patch file://b.conf"

Example: Toolchain Override in meta-clang

• In clang.bbclass:

choose between 'gcc' 'clang' an empty '' can be used as well

TOOLCHAIN ??= "gcc"

OVERRIDES =. "${@['', 'toolchain-${TOOLCHAIN}:']['${TOOLCHAIN}' != '']}"

CC_toolchain-clang = "..."

CXX_toolchain-clang = "..."

CPP_toolchain-clang = "..."

CCLD_toolchain-clang = "..."

CLANG_TIDY_EXE_toolchain-clang = "..."

RANLIB_toolchain-clang = "..."

AR_toolchain-clang = "..."

NM_toolchain-clang = "..."

Using Features

• Three classes of feature variables:
• DISTRO_FEATURES

• MACHINE_FEATURES

• IMAGE_FEATURES

• Much tidier than messing with overrides

• Conditional syntax isn’t very pretty though

Conditional Syntax

• Python expressions
• Can call a function `fn` with the syntax `${@fn()}`

• Two commonly used condition functions
• oe.utils.conditional

def conditional(variable, checkvalue, truevalue, falsevalue, d):

if d.getVar(variable) == checkvalue:

return truevalue

else:

return falsevalue

• bb.utils.contains – is `checkvalues` a subset of `variable`?
def contains(variable, checkvalues, truevalue, falsevalue, d)

Conditional Inclusion

• You can use Python expressions in include and require statements

• Example:
require ${@bb.utils.contains('DISTRO_FEATURES', ...)}

• You can have a simple .inc file without conditionals if you have many
changes to make based on one condition

Include vs Require Statements

• `require` errors on missing files
• You almost always want this

• `include` silently ignores missing files
• Useful for optional configs

• Useful when including something from another optional layer

Example: Distro Features in meta-virtualization

• README
The bbappend files for some recipes (e.g. linux-yocto) in this layer need to

have 'virtualization' in DISTRO_FEATURES to have effect. To enable them, add

in configuration file the following line.

DISTRO_FEATURES_append = " virtualization“

• linux-yocto_4.19.bbappend
require ${@bb.utils.contains('DISTRO_FEATURES', 'virtualization’,

'${BPN}_virtualization.inc', '', d)}

• No DISTO_FEATURES conditionals needed in the .inc file

Example: Conditional inheritance in meta-security

• linux-%.bbappend

inherit ${@bb.utils.contains('DISTRO_FEATURES', 'modsign’,

'kernel-modsign', '', d)}

• No DISTRO_FEATURES conditionals needed in kernel-modsign.bbclass

Adding Sanity Checks

• Add a handler for bb.event.SanityCheck
• Ensures your check only runs once

• Raise a flag if things look wrong
• bb.warn()

• bb.error()

• bb.fatal() if you really can’t continue

• Use this if you really must limit supported values of MACHINE, DISTRO,
etc

Example: Sanity Checks in meta-virtualization

• sanity-meta-virt.bbclass
addhandler virt_bbappend_distrocheck

virt_bbappend_distrocheck[eventmask] = "bb.event.SanityCheck"

python virt_bbappend_distrocheck() {

skip_check = e.data.getVar('SKIP_META_VIRT_SANITY_CHECK') == "1"

if 'virtualization' not in e.data.getVar('DISTRO_FEATURES').split()

and not skip_check:

bb.warn("...")

}

Using Anonymous Python Functions

• Useful when more complex conditionals are needed
• Full support for python if statements, for statements, etc

• Executed at parse time

• Can use d.getVar() to check variables

• Can use d.setVar() to modify variables

• Syntax:
python() {

if d.getVar('SOMEVAR').startswith('prefix'):

d.setVar('SOMEOTHERVAR', '1')

}

Using Classes to Modify Recipes

• Define a new class in your layer

• Do not set INHERIT in layer.conf or elsewhere

• Document that your functionality is enabled by adding the new class to
INHERIT in local.conf or a distro conf

• Useful if you have similar modifications to make to many recipes

Modifying BBCLASSEXTEND

• Appending to BBCLASSEXTEND in a bbappend is relatively safe

• No need for conditionals here

• May be used to add `-native` variant of an existing recipe
• Can then be used in the build of another recipe

yocto-check-layer Script

• Layer compatibility test script

• Checks recipe signatures with and without the layer present

• Also checks for other common requirements:
• Does the layer have a README?

• Does everything parse correctly?

• Is LAYERSERIES_COMPAT set?

• Can we get signatures for `bitbake world`
• Actual build is not perfomed

In Summary: Think About Downstream Developers

• How can they extend configuration?

• How can they disable things?
• Don’t force them to use _remove

• Don’t assume distro, machine or target image
• If support really is limited, add a sanity check

Parsing Details: bblayers.conf

• Parsed first
• Before any layer.conf

• Before local.conf or other user config files

• Before base.bbclass

• BBLAYERS is iterated as soon as bblayers.conf is fully parsed
• Can’t depend on variables from any of the above files

• No access to python lib directories from any layer
• Can’t `import oe` or any submodules

• Can’t use oe.utils.conditional(), use bb.utils.contains() instead

Parsing Details: layer.conf

• Parsed in sequence of BBLAYERS immediately after bblayers.conf

• Still before local.conf, base.bbclass, etc

• Still no access to python lib directories from any layer
• Including the current layer!

Future Work

• Make it easier to write friendly layers

• Automate checks against the layer index
• Catch recipe, machine or class name duplication

• Nerf layer.conf

• Simpler conditionals?

• Encourage more layer documentation
• Should we standardise here?

Thank You

Any questions?Follow Up: paul@betafive.co.uk

mailto:paul@betafive.co.uk

	Slide 1: 2. Creating Friendly Layers
	Slide 2: About Me
	Slide 3: About This Talk
	Slide 4: There Shall Be No Victims
	Slide 5: What Is A Friendly Layer?
	Slide 6: Why Should You Care?
	Slide 7: But can’t you just dynamically set BBLAYERS?
	Slide 8: Layers To Learn From
	Slide 9: Documenting Your Layer
	Slide 10: Keep layer.conf simple
	Slide 11: Adding New Content in Layers
	Slide 12: Modifying Existing Recipes
	Slide 13: _remove: Use with caution
	Slide 14: Using Overrides
	Slide 15: Example: Toolchain Override in meta-clang
	Slide 16: Using Features
	Slide 17: Conditional Syntax
	Slide 18: Conditional Inclusion
	Slide 19: Include vs Require Statements
	Slide 20: Example: Distro Features in meta-virtualization
	Slide 21: Example: Conditional inheritance in meta-security
	Slide 22: Adding Sanity Checks
	Slide 23: Example: Sanity Checks in meta-virtualization
	Slide 24: Using Anonymous Python Functions
	Slide 25: Using Classes to Modify Recipes
	Slide 26: Modifying BBCLASSEXTEND
	Slide 27: yocto-check-layer Script
	Slide 28: In Summary: Think About Downstream Developers
	Slide 29: Parsing Details: bblayers.conf
	Slide 30: Parsing Details: layer.conf
	Slide 31: Future Work
	Slide 32: Thank You Any questions?

